Seeeduino XIAO – Small but Powerful Arduino Board

Seeedstudio XIAO Product Page
Seeedstudio XIAO WIKI

Stuck at home because of the quarantine, and looking for something to do? Look no further, how about creating a DIY project with Seeeduino XIAO! Seeedstudio sent me their newest Arduino board and several Grove sensors for testing and review. I honestly have to say, I haven’t had this much fun playing with hardware in a long time!

I will give a quick overview of the Seeeduino XIAO and show a few examples of it interfacing with sensors. My personal goal for using the XIAO is twofold, to make smarter “Magic Mirrors”, and Red Team Pentest drop boxes. In this article, I quickly show how I used a XIAO and an LED Ring in an Arduino Magic Mirror. In future articles, I will show how to make smarter drop boxes with Grove sensors (I talk about one way to do this in my previous Seeed article).

Basically, imagine a Magic Mirror that turns on when you enter the room. Or one that could display a changing color bar that syncs with music. For my pentester friends, imagine smart drop boxes, ones that only scan for WiFi devices when there is a human in the room, or one that sleeps when the lights are off and only activates when someone turns the room lights on. All of this and more is/ should be possible with Grove sensors and an Arduino or Raspberry Pi board.

Alright, enough intro, let’s look at the Seeeduino XIAO!

The Hardware

The Seeeduino XIAO is Seeedstudio’s smallest Arduino board. It is about the size of a US Penny, and only about $5 – but it is a fully functional Arduino board. The tiny board comes with breadboard leads that you can solder to the board, if you wish. I haven’t soldered in a long time, so soldering the leads to the board was a little challenging at first, but then I found that just laying the tip on the middle top edge of every pin worked great!

You probably want your pins so they are longer on the bottom, so they will connect into the breadboard. For my future projects, I wanted the pins coming out the top of the board, so I can install it flush to the bottom of a case, so mine are “upside down”.

The Software

The Seeedstudio XIAO Wiki covers downloading the necessary drivers and setting up the Arduino environment, so I am not going to cover it.

Basically,

  • Download the Arduino IDE – https://www.arduino.cc/en/Main/Software
  • Start Arduino IDE, follow the instructions in the WIKI on installing the XIAO board and configuring the correct port for it (Getting Started section)
  • Load the “Blink” program in the examples, and compile and upload it, to make sure everything is setup properly

That’s it! Your XIAO is now ready for your projects!

Mini Seeeduino & Grove Weather Station

Using the XIAO and a Grove Sensor together is a snap, they interface very easily together. Though, you will need to either use jumper wires or modify a Grove connector to connect them to the XIAO. On some sensors, like the High Precision Barometric Pressure Sensor (DPS310), you can just use female to female jumper wires.

Using the Barometric Sensor, you can quickly and easily create a mini weather station! Just follow the instructions on the Seeedstudio GitHub Page, make the correct wire connections, compile and run the program, switch to the Arduino monitor, and you will see both pressure and temperature settings. This is shown in the picture above.

Login to a Raspberry Pi Through a XIAO

Another cool thing you can do with the XIAO is use it as a USB to serial interface. One use for this setup is to login to a Raspberry Pi through a Windows 10 USB connection!

Complete instructions for doing this can be found in the XIAO Wiki, just follow the steps to wire your Pi to your Arduino. Compile and load the program onto the XIAO. Run Putty on your Windows 10 system, configuring it to connect to the XIAO Com port. Then power on your Pi, configure it to allow the Serial Terminal in Raspi-Config, or set the Uart command in config.txt (instructions in the Wiki) and you are good to go.

Once everything is setup, hit, “enter” in the Putty terminal and you will see the Raspberry Pi login screen! As seen in the picture above – How cool is that?

Grove LED Ring

The Seeed Wiki doesn’t cover how to use the Grove LED ring with the XIAO, but it is very easy. Just follow the instructions given on the Grove Ring Wiki:

  • Connect the LED ground to XIAO ground, +V to 3.3 on the XIAO, and Signal to pin 6.
  • Install the Grove LED ring Library
  • Then run any of the bottom (not the first) programs listed in the Grove Wiki

And you should see something like the picture below:

That’s it, you can quickly and easily control the LED ring with the XIAO!

The nice thing is that you can use the XIAO as a very cost-effective LED controller in your projects. For example, I used mine in an Android Magic Mirror that I made a while back. Magic mirrors are very easy to make, I just used an old Android tablet, Magic Mirror software (there are several to choose from), a large picture frame and a piece of one-way glass that fit into the frame. The Android display shines through the 1-Way glass and seems to appear in the mirror.

I mounted the XIAO and the LED ring into my magic mirror and it worked fantastic!

The LED ring, powered by the XIAO showed extremely well through the Magic Mirror glass. Again, this is a “step one” proof of concept kind of thing. Additional work with straight LED’s and you could light the entire edges up, or possible, with something like a Raspberry Pi, you should be able to get the LED ring to sync to music as a song played.

Conclusion

I only briefly covered a handful of possibilities with using the XIAO. As I mentioned earlier, this board was a lot of fun to tinker with, it is a great project board for small and large projects alike. I really look forward to using this in future drop box and Magic Mirror projects. If you want something a little larger, with built in Wi-Fi and an LCD screen, I will be reviewing the WIO Terminal soon!

Hands-On Review: Grove AI HAT for Edge Computing

Bring next level intelligence to your Raspberry Pi projects with the Grove AI HAT for Edge Computing. In this article we will take a quick hands-on view of the Grove AI HAT board & Ultrasonic Sensor in standalone mode, and used as a Raspberry Pi HAT.

Introduction

The Grove AI HAT for Edge Computing is built around Sipeed MAix M1 AI MODULE with the Kendryte K210 processor inside. It’s a low cost but powerful stand-alone board that can also run as a Raspberry Pi Artificial Intelligence HAT.

The board not only bristles with peripheral connections (I2C/UART/SPI/I2S/PWM/GPIO), but has built in audio and video processing capabilities for AI projects.  This means you can connect multiple Grove Sensors to the board. Couple that with its video and audio capabilities and it makes it an interesting choice for Edge Computing environments. 

Seeedstudio provided me with a Grove AI Hat board for review. There are plenty of articles on the technical specs of the board, so this article will be more of a “hands-on” usage review. Let’s hook a Grove sensor up to the board and use it on its own, and as a Raspberry Pi HAT.

The Grove AI HAT is a new board, so there are not a lot of usability instructions available at this time. One of the quickest ways I found to interface with the board is to use the Seeedstudio Arduino interface. The ArduinoCore-API interface has been added to the board, allowing support for multiple development environments, including Arduino IDE, Linux, Windows, and Mac OS X. This basically means you can run Grove Arduino Libraries and many other Arduino libraries on this board.

Enough intro, let’s see it in action!

Basic Arduino Instructions

The Grove AI HAT can function entirely on its own and in conjunction with a Raspberry Pi. A good starting point is to connect one of the many Grove sensors to the board, and perform basic input/ output using the Arduino library.

In this section, we will see how to interact with a Grove Ultrasonic range sensor and view the output using the individual board, and then as a Raspberry Pi HAT.  

Follow the Arduino setup instructions on the Seeed website carefully. You need to add board drivers and use a specific writing option (K-flash), if you pick the wrong options, your board will not function properly.

Follow the setup instructions here:

http://wiki.seeedstudio.com/Grove_AI_HAT_for_Edge_Computing/

Summarized below:

  • Download and install the Arduino IDE on your computer
  • Run Arduino IDE
  • Add the K210 Grove AI HAT for Edge Computing driver
  • Select the K-flash programmer

The Arduino IDE is now configured to work with the Grove board.

Using the Grove Board Standalone

Once everything is setup, you can use Seeed’s sample Arduino code to control the board directly. For example, the Ultrasonic sensor.

WARNING: Do no connect or disconnect sensors to the board while it is powered up, you could damage it!

Connect your range sensor to the board (I used port D13)

Then using a USB C cable, connect the board to your computer. This will power up the board and allow your computer to communicate to it.

  • Next, load in the ultrasonic Arduino library into your sketch project folder.
  • In the Arduino IDE, enter the sample code provided by Seeed:
  • Compile and write the code to your board

Now, open the Arduino serial monitor and you should see live range detection:

Move your hand back and forth in front of the range detector, you should see the range update live in your Serial Monitor tab.

That’s all well and good, but this is a Raspberry Pi HAT! How do you use it with a Raspberry Pi?

Grove on the Raspberry Pi

In this section we will look at using the Grove AI board with a Raspberry Pi 3b+. The Pi 3b is running Raspbian and is setup up for remote access via Putty. To use the Grove Board and Pi in tandem, we need to connect them together. Disconnect power (the USB cable), connect the riser board to the Grove board, and then carefully connect the Pi and grove boards together. Make sure no power is applied to either board, and the pins line up correctly, or you could damage your boards.

Only provide power to one board, the Pi or the Grove Hat, if you connect power to both boards you need to change a switch on the Grove board.  

Connect the USB cord from your PC to the Grove power port. Both the Grove board and Raspberry Pi should power up at the same time. In this configuration, you can still use the Arduino Serial Monitor to view the sensor output. But we want to see it on the Pi.

To use the Grove board on a Pi, we will need to install the Grove Python library.

Instructions can be found here:

http://wiki.seeedstudio.com/Grove_Base_Kit_for_Raspberry_Pi/

Basically, from a Raspbian install:

Now with the Grove library installed, we can run a short Python program to communicate with the Sensor through the Raspberry PI.

  • cd ~/grove.py/grove

Enter in, save and run the following Python program in the grove directory:

ultrasonic.py:

It should look like this when done:

Now, just run the ultrasonic.py program:

And that’s it! You should see distance displayed in real time.

You can open the Arduino Serial monitor and get readings from it at the same time, as seen below:

One interesting feature is that if the Pi is shutdown, or the Python program stopped, the Grove board can continue to work.

As seen below:

The Ultrasonic program was stopped, but the device continues to operate as seen in the Arduino serial monitor.

AI Computing

As mentioned at the beginning of this video, the Grove HAT has video and audio processing capability built in. I ran into some questions on how to access the video and audio part of the card and am waiting to hear back from Seeed tech support. So, I will explore this capability in future articles, but for now, Seeed has a great demo video of this capability on their website:

https://project.seeedstudio.com/SeeedStudio/face-count-and-display-using-grove-ai-hat-and-pi-3e100f

Conclusion

This was just a very basic intro to the Grove AI HAT for Edge Computing. The board is very exciting as it brings a host of sensor capabilities to the Raspberry Pi platform. I believe this will allow for much more intelligent Pentest drop boxes (it could sense and record when someone was in the room, for example), robotics projects, Magic Mirrors, and whatever else you can dream up. Stay tuned, more to come!

About Seeed Studio:
Seeed is the IoT hardware enabler providing services over 10 years that empower makers to realize their projects and products. Seeed offers a wide array of hardware platforms and sensor modules ready to be integrated with existing IoT platforms and one stop PCB manufacturing and Prototype PCB Assembly.

Seeed Studio provides a wide selection of electronic parts including ArduinoRaspberry Pi and many different development board platforms. Especially the Grove System help engineers and makers avoid jumper wires problems. Seeed Studio has developed more than 280 Grove modules covering a wide range of applications that can fulfill a variety of needs.